Part Number Hot Search : 
UPC2903 74LVX32M 4CMC19 HSP451 MBM29 TFS140H RB155 SQ045
Product Description
Full Text Search
 

To Download MJD18002D2-D Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  ? semiconductor components industries, llc, 2001 april, 2001 rev. 0 1 publication order number: mjd18002d2/d mjd18002d2 bipolar npn transistor high speed, high gain bipolar npn power transistor with integrated collectoremitter diode and builtin efficient antisaturation network the mjd18002d2 is a stateoftheart high speed, high gain bipolar transistor (h2bip). tight dynamic characteristics and lot to lot minimum spread ( 150 ns on storage time) make it ideally suitable for light ballast applications. therefore, there is no longer a need to guarantee an h fe window. main features: ? low base drive requirement ? high peak dc current gain (55 typical) @ i c = 100 ma ? extremely low storage time min/max guarantees due to the h2bip structure which minimizes the spread ? integrated collectoremitter free wheeling diode ? fully characterized and guaranteed dynamic v cesat ? characteristics make it suitable for pfc application ? a6 sigmao process providing tight and reproductible parameter spreads two versions: ? mjd18002d21: case 369 for insertion mode ? mjd18002d2: case 369a for surface mount mode maximum ratings rating symbol value unit collectoremitter sustaining voltage v ceo 450 vdc collectorbase breakdown voltage v cbo 1000 vdc collectoremitter breakdown voltage v ces 1000 vdc emitterbase voltage v ebo 11 vdc collector current continuous collector current peak (note 1.) i c i cm 2.0 5.0 adc base current continuous base current peak (note 1.) i b i bm 1.0 2.0 adc thermal characteristics characteristic symbol value unit total device dissipation @ t c = 25 c derate above 25 c p d 50 0.4 w w/ c operating and storage temperature range t j , t stg 65 to +150 c thermal resistance junctiontocase r q jc 5.0 c/w thermal resistance junctiontoambient r q ja 71.4 c/w maximum lead temperature for soldering purposes: 1/8 from case for 5 sec. t l 260 c 1. pulse test: pulse width = 5.0 ms, duty cycle = 10% http://onsemi.com dpak case 369 style 1 2 amperes 1000 volts 50 watts power transistor marking diagrams y = year ww = work week mjd18002 = device code device package shipping ordering information mjd18002d21 dpak 75 units/rail mjd18002d2t4 dpak 3000/tape & reel dpak case 369a style 1 yww mjd 18002 yww mjd 18002
mjd18002d2 http://onsemi.com 2 electrical characteristics (t c = 25 c unless otherwise noted) ??????????????????? ??????????????????? characteristic ????? ????? symbol ??? ??? min ???? ???? typ ???? ???? max ??? ??? unit ????????????????????????????????? ????????????????????????????????? off characteristics ??????????????????? ??????????????????? collectoremitter sustaining voltage (i c = 100 ma, l = 25 mh) ????? ????? v ceo(sus) ??? ??? 450 ???? ???? 570 ???? ???? ??? ??? vdc ??????????????????? ??????????????????? collectorbase breakdown voltage (i cbo = 1 ma) ????? ????? v cbo ??? ??? 1000 ???? ???? 1100 ???? ???? ??? ??? vdc ??????????????????? ??????????????????? emitterbase breakdown voltage (i ebo = 1 ma) ????? ????? v ebo ??? ??? 11 ???? ???? 14 ???? ???? ??? ??? vdc ??????????????????? ??????????????????? collector cutoff current (v ce = rated v ceo , i b = 0) ????? ????? i ceo ??? ??? ???? ???? ???? ???? 100 ??? ??? m adc ??????????????? ? ????????????? ? ??????????????? collector cutoff current (v ce = rated v ces , v eb = 0) collector cutoff current (v ce = 500 v, v eb = 0) ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c @ t c = 125 c ????? ? ??? ? ????? i ces ??? ? ? ? ??? ???? ? ?? ? ???? ???? ? ?? ? ???? 100 500 100 ??? ? ? ? ??? m adc ??????????????????? ??????????????????? emittercutoff current (v eb = 10 vdc, i c = 0) ????? ????? i ebo ??? ??? ???? ???? ???? ???? 500 ??? ??? m adc ????????????????????????????????? ????????????????????????????????? on characteristics ??????????????? ? ????????????? ? ? ????????????? ? ??????????????? baseemitter saturation voltage (i c = 0.4 adc, i b = 40 madc) (i c = 1.0 adc, i b = 0.2 adc) ????? ? ??? ? ? ??? ? ????? @ t c = 25 c @ t c = 25 c ????? ? ??? ? ? ??? ? ????? v be(sat) ??? ? ? ? ? ? ? ??? ???? ? ?? ? ? ?? ? ???? 0.78 0.87 ???? ? ?? ? ? ?? ? ???? 1.0 1.1 ??? ? ? ? ? ? ? ??? vdc ??????????????? ??????????????? collectoremitter saturation voltage (i c = 0.4 adc, i b = 40 madc) ????? ????? @ t c = 25 c @ t c = 125 c ????? ????? v ce(sat) ??? ??? ???? ???? 0.36 0.50 ???? ???? 0.6 1.0 ??? ??? vdc ??????????????? ? ????????????? ? ??????????????? (i c = 1.0 adc, i b = 0.2 adc) ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ????? ? ??? ? ????? ??? ? ? ? ??? ???? ? ?? ? ???? 0.40 0.65 ???? ? ?? ? ???? 0.75 1.2 ??? ? ? ? ??? ??????????????? ? ????????????? ? ??????????????? dc current gain (i c = 0.4 adc, v ce = 1.0 vdc) ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ????? ? ??? ? ????? h fe ??? ? ? ? ??? 14 8.0 ???? ? ?? ? ???? 25 15 ???? ? ?? ? ???? ??? ? ? ? ??? ??????????????? ??????????????? (i c = 1.0 adc, v ce = 1.0 vdc) ????? ????? @ t c = 25 c @ t c = 125 c ????? ????? ??? ??? 6.0 4.0 ???? ???? 10 6.0 ???? ???? ??? ??? ????????????????????????????????? ????????????????????????????????? dynamic characteristics ??????????????????? ??????????????????? current gain bandwidth (i c = 0.5 adc, v ce = 10 vdc, f = 1 mhz) ????? ????? f t ??? ??? ???? ???? 13 ???? ???? ??? ??? mhz ??????????????????? ??????????????????? output capacitance (v cb = 10 vdc, i e = 0, f = 1 mhz) ????? ????? c ob ??? ??? ???? ???? 50 ???? ???? 100 ??? ??? pf ??????????????????? ??????????????????? input capacitance (v eb = 8 vdc) ????? ????? c ib ??? ??? ???? ???? 340 ???? ???? 500 ??? ??? pf ????????????????????????????????? ????????????????????????????????? diode characteristics ??????????????? ? ????????????? ? ??????????????? forward diode voltage (i ec = 1.0 adc) ????? ? ??? ? ????? @ t c = 25 c ????? ? ??? ? ????? v ec ??? ? ? ? ??? ???? ? ?? ? ???? 1.2 ???? ? ?? ? ???? 1.5 ??? ? ? ? ??? vdc ??????????????? ??????????????? (i ec = 0.4 adc) ????? ????? @ t c = 25 c ????? ????? ??? ??? ???? ???? 1.0 ???? ???? 1.3 ??? ??? ??????????????? ??????????????? ????? ????? @ t c = 125 c ????? ????? ??? ??? ???? ???? 0.6 ???? ???? ??? ??? ??????????????? ? ????????????? ? ??????????????? forward recovery time (i f = 0.4 adc, di/dt = 10 a/ m s) ????? ? ??? ? ????? @ t c = 25 c ????? ? ??? ? ????? t fr ??? ? ? ? ??? ???? ? ?? ? ???? 517 ???? ? ?? ? ???? ??? ? ? ? ??? ns ??????????????? ? ????????????? ? (i f = 1.0 adc, di/dt = 10 a/ m s) ????? ? ??? ? @ t c = 25 c ????? ? ??? ? ??? ? ? ? ???? ? ?? ? 480 ???? ? ?? ? ??? ? ? ?
mjd18002d2 http://onsemi.com 3 electrical characteristics (t c = 25 c unless otherwise noted) ??????????????????? ??????????????????? characteristic ???? ???? symbol ???? ???? min ???? ???? typ ???? ???? max ??? ??? unit ????????????????????????????????? ????????????????????????????????? dynamic saturation voltage ???????? ???????? dynamic saturation vl ????? ????? i c = 0.4 adc i b1 =40ma ???? ???? @ 1 m s ????? ????? @ t c = 25 c ???? ???? v ce(dsat) ???? ???? ???? ???? 7.4 ???? ???? ??? ??? v ???????? ???????? y voltage determinated 1  s and ????? ????? i b1 = 40 ma v cc = 300 vdc ???? ???? @ 3 m s ????? ????? @ t c = 25 c ???? ???? ???? ???? ???? ???? 2.5 ???? ???? ??? ??? ???????? ???????? determinated 1  s and 3  s respectively after rising i b1 reaches 90% ????? ????? i c = 1 adc i b1 =02a ???? ???? @ 1 m s ????? ????? @ t c = 25 c ???? ???? ???? ???? ???? ???? 11.7 ???? ???? ??? ??? ???????? ? ?????? ? ???????? rising i b1 reaches 90% of final i b1 ????? ? ??? ? ????? i b1 = 0.2 a v cc = 300 vdc ???? ? ?? ? ???? @ 3 m s ????? ? ??? ? ????? @ t c = 25 c ???? ? ?? ? ???? ???? ? ?? ? ???? ???? ? ?? ? ???? 1.3 ???? ? ?? ? ???? ??? ? ? ? ??? ????????????????????????????????? switching characteristics: resistive load (d.c.s. 10%, pulse width = 40  s) ???????? ? ?????? ? ???????? turnon time ???????? ? ?????? ? ???????? i c = 0.4 adc, i b1 = 40 madc i b2 = 200 madc ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ???? ? ?? ? ???? t on ???? ? ?? ? ???? ???? ? ?? ? ???? 225 375 ???? ? ?? ? ???? 350 ??? ? ? ? ??? ns ???????? ? ?????? ? ???????? turnoff time ???????? ? ?????? ? ???????? i b2 = 200 madc v cc = 300 vdc ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ???? ? ?? ? ???? t off ???? ? ?? ? ???? 0.8 ???? ? ?? ? ???? 1.5 ???? ? ?? ? ???? 1.1 ??? ? ? ? ??? m s ???????? ? ?????? ? ???????? turnon time ???????? ? ?????? ? ???????? i c = 1.0 adc, i b1 = 0.2 adc i b2 =05adc ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ???? ? ?? ? ???? t on ???? ? ?? ? ???? ???? ? ?? ? ???? 100 94 ???? ? ?? ? ???? 150 ??? ? ? ? ??? ns ???????? ???????? turnoff time ???????? ???????? i b2 = 0.5 adc v cc = 300 vdc ????? ????? @ t c = 25 c @ t c = 125 c ???? ???? t off ???? ???? 0.95 ???? ???? 1.5 ???? ???? 1.25 ??? ??? m s ????????????????????????????????? ????????????????????????????????? switching characteristics: inductive load (v clamp = 300 v, v cc = 15 v, l = 200 m h) ???????? ? ?????? ? ???????? fall time ???????? ? ?????? ? ???????? ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ???? ? ?? ? ???? t f ???? ? ?? ? ???? ???? ? ?? ? ???? 130 120 ???? ? ?? ? ???? 175 ??? ? ? ? ??? ns ???????? ? ?????? ? ???????? storage time ???????? ? ?????? ? ???????? i c = 0.4 adc i b1 = 40 madc i b2 = 0 .2 a dc ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ???? ? ?? ? ???? t s ???? ? ?? ? ???? 0.4 ???? ? ?? ? ???? 0.7 ???? ? ?? ? ???? 0.7 ??? ? ? ? ??? m s ???????? ???????? crossover time ???????? ???????? i b2 = 0 . 2 adc ????? ????? @ t c = 25 c @ t c = 125 c ???? ???? t c ???? ???? ???? ???? 110 100 ???? ???? 175 ??? ??? ns ???????? ? ?????? ? ???????? fall time ???????? ? ?????? ? ???????? ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ???? ? ?? ? ???? t f ???? ? ?? ? ???? ???? ? ?? ? ???? 130 140 ???? ? ?? ? ???? 175 ??? ? ? ? ??? ns ???????? ? ?????? ? ???????? storage time ???????? ? ?????? ? ???????? i c = 0.8 adc i b1 = 160 madc i b2 = 1 60 ma dc ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ???? ? ?? ? ???? t s ???? ? ?? ? ???? 2.1 ???? ? ?? ? ???? 3.0 ???? ? ?? ? ???? 2.4 ??? ? ? ? ??? m s ???????? ???????? crossover time ???????? ???????? i b2 = 160 madc ????? ????? @ t c = 25 c @ t c = 125 c ???? ???? t c ???? ???? ???? ???? 275 350 ???? ???? 350 ??? ??? ns ???????? ? ?????? ? ???????? fall time ???????? ? ?????? ? ???????? ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ???? ? ?? ? ???? t f ???? ? ?? ? ???? ???? ? ?? ? ???? 100 100 ???? ? ?? ? ???? 150 ??? ? ? ? ??? ns ???????? ? ?????? ? ???????? storage time ???????? ? ?????? ? ???????? i c = 1.0 adc i b1 = 0.2 adc i b2 = 0 . 5 a dc ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ???? ? ?? ? ???? t s ???? ? ?? ? ???? ???? ? ?? ? ???? 1.05 1.45 ???? ? ?? ? ???? 1.2 ??? ? ? ? ??? m s ???????? ???????? crossover time ???????? ???????? i b2 = 0 . 5 adc ????? ????? @ t c = 25 c @ t c = 125 c ???? ???? t c ???? ???? ???? ???? 100 115 ???? ???? 150 ??? ??? ns
mjd18002d2 http://onsemi.com 4 typical static characteristics figure 1. dc current gain @ 1 v i c , collector current (amps) 100 40 10 1 0.1 0.01 0.001 figure 2. dc current gain @ 5 v 0 h fe , dc current gain i c , collector current (amps) 10 1 0.1 0.01 0.001 0 h fe , dc current gain figure 3. collector saturation region i b , base current (amps) 4 1 10 1 0.1 0.01 0.001 figure 4. collectoremitter saturation voltage 0 v ce , voltage (volts) i c , collector current (amps) 100 10 10 1 0.1 0.01 0.001 0.1 v ce , voltage (volts) 2 1 figure 5. collectoremitter saturation voltage i c , collector current (amps) 0.1 10 1 0.1 0.01 0.001 v ce , voltage (volts) i c , collector current (amps) 10 1 10 1 0.1 0.01 0.001 v ce , voltage (volts) 1 0.1 figure 6. collectoremitter saturation voltage 10 100 t j = 125 c 20 c 25 c t j = 25 c 2 a 1.5 a 1 a i c = 200 ma 400 ma t j = 125 c 20 c 25 c t j = 125 c 20 c 25 c 20 60 80 v ce = 1 v 100 40 t j = 125 c 20 c 25 c 20 60 80 v ce = 5 v 3 i c /i b = 20 i c /i b = 10 i c /i b = 5 t j = 125 c 20 c 25 c
mjd18002d2 http://onsemi.com 5 typical static characteristics figure 7. baseemitter saturation region i c /i b = 5 i c , collector current (amps) 10 1 10 1 0.1 0.01 0.001 figure 8. baseemitter saturation region i c /i b = 10 0.1 v be , voltage (volts) i c , collector current (amps) 10 1 10 1 0.1 0.01 0.001 0.1 v be , voltage (volts) figure 9. baseemitter saturation region i c /i b = 20 i c , collector current (amps) 10 1 10 1 0.1 0.01 0.001 figure 10. forward diode voltage 0.1 v be , voltage (volts) reverse emittercollector current (amps) 10 1 10 1 0.1 0.01 forward diode voltage (volts) 0.1 t j = 125 c 20 c 25 c t j = 125 c 20 c 25 c t j = 125 c 20 c 25 c v ec(v) = 20 c 125 c 25 c i c /i b = 10 i c /i b = 5 i c /i b = 20 typical switching characteristics figure 11. capacitance v r , reverse voltage (volts) 100 10 1 1 c, capacitance (pf) i c , collector current (amps) 3000 2000 1.6 0.4 0.1 0 10 1000 figure 12. resistive switch time, t on 100 1000 2500 500 1500 c ib (pf) c ob (pf) t j = 25 c f(test) = 1 mhz 0.7 1 1.3 i bon = i boff v cc = 300 v pw = 40  s t j = 125 c t j = 25 c i c /i b = 5 i c /i b = 10 t, time (  s)
mjd18002d2 http://onsemi.com 6 typical switching characteristics figure 13. resistive switch time, t off i c , collector current (amps) 5.5 1.6 1 0.7 0.4 0.1 figure 14. inductive storage time, t si @ i c /i b = 5 1.5 t, time (  s) figure 15. inductive switching, t c & t fi @ i c /i b = 5 i c , collector current (amps) 700 100 1.5 1 0.5 0 figure 16. inductive storage time 0 t, time (  s) h fe , forced gain 15 9 6 3 t, time (  s) 0 figure 17. inductive fall time h fe , forced gain 15 5 3 0 t fi , fall time (ns) h fe , forced gain 1800 15 6 3 0 t, time (  s) 600 figure 18. inductive crossover time 1000 2.5 3.0 3.5 4.0 4.5 5.0 12 1 2 3 4 300 500 11 200 400 600 12 9 i bon = i boff v cc = 300 v pw = 40  s i bon = i boff , v cc = 15 v, v z = 300 v l c = 200  h i bon = i boff , v cc = 15 v, v z = 300 v l c = 200  h i bon = i boff , v cc = 15 v, v z = 300 v l c = 200  h 1200 t j = 125 c t j = 25 c i c /i b = 5 i c /i b = 10 1.3 2.0 i c , collector current (amps) 3 1.5 1.5 1 0.5 0 1 t, time (  s) 2 2.5 t j = 125 c i bon = i boff , v cc = 15 v, v z = 300 v l c = 200  h t j = 25 c 200 400 600 t j = 125 c t j = 25 c i c /i bon = 5 t fi t c t j = 125 c t j = 25 c i c = 300 ma i c = 1 a t j = 125 c t j = 25 c 9 713 800 i c = 1 a i c = 0.3 a i bon = i boff , v cc = 15 v, v z = 300 v l c = 200  h t j = 125 c t j = 25 c i c = 1 a i c = 0.3 a
mjd18002d2 http://onsemi.com 7 typical switching characteristics figure 19. inductive switching time, t fi & t c @ g = 10 i c , collector current (amps) 1600 0 1.5 1.1 0.7 0.3 figure 20. inductive switching time, t si t, time (  s) i c , collector current (amps) 1.5 1 0.5 0 0 t, time (  s) figure 21. inductive storage time, t fi i c , collector current (amps) 150 50 1.5 0 figure 22. inductive storage time, t c t, time (  s) i c , collector current (amps) 0 t, time (  s) 50 figure 23. inductive storage time, t si h fe , forced gain 1.6 0 1 crossover time (ns) figure 24. dynamic saturation voltage measurements 2.4 400 800 0.4 0.8 1.2 1.6 1.5 100 150 200 300 100 0.4 1.2 1.8 1200 200 0.5 1 250 0.5 1 0.8 1.2 1.4 1.6 2.0 2.2 i bon = i boff , v cc = 15 v, v z = 300 v l c = 200  h i boff = i c /2, v cc = 15 v, v z = 300 v l c = 200  h i boff = i c /2, v cc = 15 v, v z = 300 v l c = 200  h i bon = i boff , v cc = 15 v, v z = 300 v l c = 200  h t j = 125 c t j = 25 c t c t fi t j = 125 c t j = 25 c i c /i b = 5 i c /i b = 10 t j = 125 c t j = 25 c i c /i b = 5 i c /i b = 10 t j = 125 c t j = 25 c i boff = i c /2, v cc = 15 v, v z = 300 v l c = 200  h i c /i b = 5 i c /i b = 10 i b = 500 ma i b = 200 ma i b = 100 ma i b = 50 ma
mjd18002d2 http://onsemi.com 8 typical switching characteristics figure 25. inductive switching measurements time 8 6 4 2 0 0 1 2 3 4 5 6 10 7 8 9 7 5 3 1 i c i b v clamp 10% v clamp 90% i b1 90% i c t si t c t fi 10% i c table 1. inductive load switching drive circuit v (br)ceo(sus) l = 10 mh r b2 = v cc = 20 volts i c(pk) = 100 ma inductive switching l = 200 m h r b2 = 0 v cc = 15 volts r b1 selected for desired i b1 rbsoa l = 500 m h r b2 = 0 v cc = 15 volts r b1 selected for desired i b1 +15 v 1 m f 150 w 3 w 100 w 3 w mpf930 +10 v 50 w common -v off 500 m f mpf930 mtp8p10 mur105 mje210 mtp12n10 mtp8p10 150 w 3 w 100 m f i out a r b1 r b2 1 m f i c peak v ce peak v ce i b i b1 i b2
mjd18002d2 http://onsemi.com 9 10  s figure 26. t fr measurement figure 27. forward bias safe operating area i f v ce , collectoremitter voltage (volts) 100 10 0.01 i c , collector current (amps) figure 28. reverse bias safe operating area v ce , collectoremitter voltage (volts) 2 0 1200 200 0 figure 29. forward bias power derating i c , collector current (amps) t c , case temperature ( c) 40 20 power derating factor 0 0.1 10 160 0.2 0.4 0.6 1 0.5 1 1 2.5 400 800 1000 0.8 60 100 80 120 140 v f 1000 600 1.5 10% i f v frm 0.1 v f t fr v fr (1.1 v f ) unless otherwise specified second breakdown derating thermal derating extended soa dc 50  s 1  s 5 ms 1 ms t c = 125 c gain = 4 l c = 500  h v be = 0 v v be(off) = 1.5 v v be(off) = 5 v 02 4 6 810 12 8 6 4 10 2 0 v f there are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. safe operating area curves indicate i c v ce limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. the data of figure 27 is based on t c = 25 c; t j(pk) is variable depending on power level. second breakdown pulse limits are valid for duty cycles to 10% but must be derated when t c > 25 c. second breakdown limitations do not derate the same as thermal limitations. allowable current at the voltages shown on figure 27 may be found at any case temperature by using the appropriate curve on figure 29. t j(pk) may be calculated from the data in figure 30. at any case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. for inductive loads, high voltage and current must be sustained simultaneously during turnoff with the base to emitter junction reverse biased. the safe level is specified as a reverse biased safe operating area (figure 28). this rating is verified under clamped conditions so that the device is never subjected to an avalanche mode.
mjd18002d2 http://onsemi.com 10 1000 100 10 1 0.1 0.01 0.01 r(t) transient thermal resistance (normalised) 1 0.1 figure 30. typical thermal response (z  jc (t)) for mjd18002d2 t, time (ms) p (pk) t 1 t 2 duty cycle, d = t 1 /t 2 r q jc(t) = r(t) r q jc r q jc = 5 c/w max d curves apply for power pulse train shown read time at t 1 t j(pk) - t c = p (pk) r  jc (t) single pulse 0.01 0.02 0.05 0.1 0.2 0.5 figure 31. b vcer figure 32. forward recovery time, t fr i f , forward current (amps) 0.5 0 300 340 440 2 r be () 100 10 400 500 100,000 600 700 800 900 1000 1100 1000 10,000 b vcer (volts) @ 10 ma b vcer(sus) @ 200 ma t j = 25 c 320 1 1.5 360 400 380 420 di/dt = 10 a/  s t c = 25 c
mjd18002d2 http://onsemi.com 11 typical solder heating profile for any given circuit board, there will be a group of control settings that will give the desired heat pattern. the operator must set temperatures for several heating zones, and a figure for belt speed. taken together, these control settings make up a heating aprofileo for that particular circuit board. on machines controlled by a computer, the computer remembers these profiles from one operating session to the next. figure 33 shows a typical heating profile for use when soldering a surface mount device to a printed circuit board. this profile will vary among soldering systems but it is a good starting point. factors that can affect the profile include the type of soldering system in use, density and types of components on the board, type of solder used, and the type of board or substrate material being used. this profile shows temperature versus time. the line on the graph shows the actual temperature that might be experienced on the surface of a test board at or near a central solder joint. the two profiles are based on a high density and a low density board. the vitronics smd310 convection/infrared reflow soldering system was used to generate this profile. the type of solder used was 62/36/2 tin lead silver with a melting point between 177189 c. when this type of furnace is used for solder reflow work, the circuit boards and solder joints tend to heat first. the components on the board are then heated by conduction. the circuit board, because it has a large surface area, absorbs the thermal energy more efficiently, then distributes this energy to the components. because of this effect, the main body of a component may be up to 30 degrees cooler than the adjacent solder joints. step 1 preheat zone 1 ramp" step 2 vent soak" step 3 heating zones 2 & 5 ramp" step 4 heating zones 3 & 6 soak" step 5 heating zones 4 & 7 spike" step 6 vent step 7 cooling 200 c 150 c 100 c 50 c time (3 to 7 minutes total) t max solder is liquid for 40 to 80 seconds (depending on mass of assembly) 205 to 219 c peak at solder joint desired curve for low mass assemblies 100 c 150 c 160 c 170 c 140 c desired curve for high mass assemblies figure 33. typical solder heating profile
mjd18002d2 http://onsemi.com 12 6.7 0.265 1.6 0.063 2.3 0.090 2.3 0.090 1.6 0.063 minimum pad sizes recommended for surface mounted applications 0.265 6.7 0.118 3.0 0.070 1.8 inches mm
mjd18002d2 http://onsemi.com 13 package dimensions case 369a13 issue aa dpak style 1: pin 1. base 2. collector 3. emitter 4. collector d a k b r v s f l g 2 pl m 0.13 (0.005) t e c u j h t seating plane z dim min max min max millimeters inches a 0.235 0.250 5.97 6.35 b 0.250 0.265 6.35 6.73 c 0.086 0.094 2.19 2.38 d 0.027 0.035 0.69 0.88 e 0.033 0.040 0.84 1.01 f 0.037 0.047 0.94 1.19 g 0.180 bsc 4.58 bsc h 0.034 0.040 0.87 1.01 j 0.018 0.023 0.46 0.58 k 0.102 0.114 2.60 2.89 l 0.090 bsc 2.29 bsc r 0.175 0.215 4.45 5.46 s 0.020 0.050 0.51 1.27 u 0.020 --- 0.51 --- v 0.030 0.050 0.77 1.27 z 0.138 --- 3.51 --- notes: 1. dimensioning and tolerancing per ansi y14.5m, 1982. 2. controlling dimension: inch. 123 4
mjd18002d2 http://onsemi.com 14 package dimensions case 36907 issue m dpak straight leads style 1: pin 1. base 2. collector 3. emitter 4. collector notes: 1. dimensioning and tolerancing per ansi y14.5m, 1982. 2. controlling dimension: inch. 123 4 v s a k t seating plane r b f g d 3 pl m 0.13 (0.005) t c e j h dim min max min max millimeters inches a 0.235 0.250 5.97 6.35 b 0.250 0.265 6.35 6.73 c 0.086 0.094 2.19 2.38 d 0.027 0.035 0.69 0.88 e 0.033 0.040 0.84 1.01 f 0.037 0.047 0.94 1.19 g 0.090 bsc 2.29 bsc h 0.034 0.040 0.87 1.01 j 0.018 0.023 0.46 0.58 k 0.350 0.380 8.89 9.65 r 0.175 0.215 4.45 5.46 s 0.050 0.090 1.27 2.28 v 0.030 0.050 0.77 1.27
mjd18002d2 http://onsemi.com 15 notes
mjd18002d2 http://onsemi.com 16 on semiconductor and are trademarks of semiconductor components industries, llc (scillc). scillc reserves the right to make changes without further notice to any products herein. scillc makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does scillc assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. atypicalo parameters which may be provided in scill c data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. all operating parameters, including atypicalso must be validated for each customer application by customer's technical experts. scillc does not convey any license under its patent rights nor the rights of others. scillc products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body , or other applications intended to support or sustain life, or for any other application in which the failure of the scillc product could create a sit uation where personal injury or death may occur. should buyer purchase or use scillc products for any such unintended or unauthorized application, buyer shall indemnify and hold scillc and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthori zed use, even if such claim alleges that scillc was negligent regarding the design or manufacture of the part. scillc is an equal opportunity/affirmative action employer. publication ordering information central/south america: spanish phone : 3033087143 (monfri 8:00am to 5:00pm mst) email : onlitspanish@hibbertco.com tollfree from mexico: dial 018002882872 for access then dial 8662979322 asia/pacific : ldc for on semiconductor asia support phone : 13036752121 (tuefri 9:00am to 1:00pm, hong kong time) toll free from hong kong & singapore: 00180044223781 email : onlitasia@hibbertco.com japan : on semiconductor, japan customer focus center 4321 nishigotanda, shinagawaku, tokyo, japan 1410031 phone : 81357402700 email : r14525@onsemi.com on semiconductor website : http://onsemi.com for additional information, please contact your local sales representative. mjd18002d2/d north america literature fulfillment : literature distribution center for on semiconductor p.o. box 5163, denver, colorado 80217 usa phone : 3036752175 or 8003443860 toll free usa/canada fax : 3036752176 or 8003443867 toll free usa/canada email : onlit@hibbertco.com fax response line: 3036752167 or 8003443810 toll free usa/canada n. american technical support : 8002829855 toll free usa/canada europe: ldc for on semiconductor european support german phone : (+1) 3033087140 (monfri 2:30pm to 7:00pm cet) email : onlitgerman@hibbertco.com french phone : (+1) 3033087141 (monfri 2:00pm to 7:00pm cet) email : onlitfrench@hibbertco.com english phone : (+1) 3033087142 (monfri 12:00pm to 5:00pm gmt) email : onlit@hibbertco.com european tollfree access*: 0080044223781 *available from germany, france, italy, uk, ireland


▲Up To Search▲   

 
Price & Availability of MJD18002D2-D

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X